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Abstract—The received signal strength measurement has been
widely used in search and tracking applications and its benefit is
linked with the distance between the transmitter and receiver.
This paper proposes an online Bayesian optimisation-based
approach that relies on signal strength measurements to schedule
multiple sensors for searching and tracking a moving target,
without any prior knowledge of the target’s state or motion
model. A unique contribution lies in incorporating the Gaussian
processes factorisation method into the Bayesian optimisation
framework, which enhances the effectiveness of the proposed
approach. Numerical results obtained from different sizes of
measurements demonstrate that the proposed approach can
efficiently schedule two unmanned aerial vehicles. Particularly,
it achieves at most 21% lower computational time for deciding
measurement locations and 79% lower time for updating the
surrogate model as compared to the benchmark approach.

Index Terms—Active sensing, Bayesian optimisation, fac-
torised Gaussian process, target tracking, sensor management,
unmanned aerial vehicles, hierarchical off-diagonal low-rank
(HODLR) factorisation

I. INTRODUCTION

Target tracking is crucial for applications including sea
surveillance, autonomous vehicles, and traffic monitoring.
Model-based and data-driven approaches have been pro-
posed for this challenge, dealing with data association,
group/extended object, and sensor management. However,
many approaches rely on informative prior state beliefs which
may be unavailable in scenarios like search and rescue or
wildlife monitoring. In such cases, the active position estima-
tion [1] becomes a significant challenge as the active sensing
platform must locate and track the target simultaneously.

One way to detect and track targets is by analysing the
received signal strength (RSS). By measuring the RSS, the
distance between the sensor and the target can be estimated.
This distance can then be used to track the target over time.
Moreover, changes in the RSS signal can provide additional
information about the target, such as its velocity and direction
of movement [2]. Therefore, active sensing using RSS signals
has become an important research area in target tracking and
has demonstrated promising results in various applications.

There are three primary types of active sensing techniques
for searching and tracking targets, based on the RSS-distance
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relationship. Geometric approaches [3] rely on model inversion
and trilateration, which requires at least three receivers to
estimate the target’s position accurately. Statistical strategies
[4], [5] are designed to account for both model inaccuracies
and measurement noise by treating RSS measurements as
random variables and applying statistical filtering techniques,
such as the Kalman filter and particle filter, to refine raw
data points. Data-driven methods leverage machine learning
models, such as neural networks [6] or Gaussian processes
(GP) [7], to model the RSS-distance relationship, and optimise
their parameters during the training process. In this paper, we
follow the data-driven idea to design a Bayesian optimisation
(BO)-based probabilistic search and tracking approach.

BO is a machine learning-based optimisation method that
involves building a surrogate model for the objective function,
along with prediction uncertainty quantification using GP. BO
iteratively locates the global optimum by using an acquisition
function (AF) defined over the surrogate. BO has been applied
to solve active sensing and path planning problems [8]–[10].
In these works, GP represents the RSS-distance relationship
and AF is used to decide where to place the sensors to
collect new measurements and plan the path of the unmanned
aerial vehicles (UAVs). However, most existing works focused
on modelling stationary processes (e.g., searching for static
targets or planning based on static environments). BO can
also be used to solve dynamic and non-stationary optimisation
problems [11]–[13] by designing kernel functions to account
for non-stationary and time-varying processes.

While BO shows promise for solving active sensing prob-
lems, its computational complexity cannot be ignored, espe-
cially when a large number of measurements are collected by
the sensing platform. This is due to the n×n covariance matrix
of GP, which incurs a significant cubic computational cost
(O(n3)) with respect to the number of measurements n. This
poses challenges for real-time active sensing since both GP
model updates and AF optimisation can be time-consuming,
which is related to inversion and determinant evaluation of the
covariance matrix. To reduce the computational complexity,
this paper explores the idea of factorising the dense covariance
matrix into data-sparse hierarchical off-diagonal matrices [14],
[15]. This structure can provide a very close approximation to
the Cholesky factorisation method with only O(nlog n2) cost.



Moreover, the computational complexity was further reduced
to O(nlog n) with a designed low-rank approximation method.

This paper proposes a BO-assisted approach for active
sensing management to search and track a moving target. In
contrast to our previous work [16] that focused on distributed
tracking, this study emphasises active tracking without any
prior position information. The main contribution is two-fold.
First, a spatial-temporal composite kernel function is designed
to account for the non-stationary and time-varying nature of
the RSS map. Moreover, several techniques are introduced to
reduce the computational cost of the GP used in BO. The
proposed approach can schedule multiple UAVs to perform
efficient area search and can also be applied to activate sensors
over time in sensor management problems [17].

The paper is structured as follows: In Section II, the problem
formulations and the fundamentals of BO are introduced.
Section III presents the proposed search and tracking approach.
Section IV presents the simulation results, while Section V
summarises the conclusions.

II. PROBLEM FORMULATION

We first model the RSS as a black-box function of the
coordinates of the measuring location and the time. Define
the location of measuring the RSS in time t as xt ∈ X ⊂ R2,
where X is the area of interest. Denote y as the measurement,
a black-box dynamic function can be represented as

y = f(xt, t) + ϵ, (1)

where ϵ is the measurement noise that is assumed to follow
a zero-mean Gaussian distribution with variance σ2. Since
the expected value of an RSS measurement is related to the
proximity between the target and the sensor, the location with
the highest expected value of RSS measurements is identified
as the target location. The task of searching and tracking a
target over time is equivalent to solving a dynamic optimisa-
tion problem [18], specifically finding the maximum of this
function. This optimisation problem can be formulated as

max f(xt, t), (2)
s.t. xt ∈ X , t ∈ T , (3)

where X and T are the spatial and temporal search spaces,
respectively. Next, we describe the GP that represents the
black-box function. The UAVs positions are optimised based
on the objective AF function.

A. Gaussian Process Regression

The unknown function f(xt, t) is a black-box function
lacking an analytical form. Therefore, a surrogate model,
namely GP, is utilised to represent this function for two
reasons. First, GP can quantify the uncertainty of the learned
RSSs in a principled way, aiding the exploration-exploitation
(EE) tradeoff for maximisation (see more details in the next
section). Second, GP functions well with small volumes of
data and is particularly useful in the early stages of the
search process where few RSS measurements are available

for building the surrogate. The GP that is placed as a prior
distribution of the function f(xt, t) can be written as

f(xt, t) ∼ GP (m(xt, t), k((xt, t), (x
′
t, t

′))) , (4)

where (xt, t) and (x′
t, t

′) are either the training or the testing
input data. m(xt, t) and k((xt, t), (x

′
t, t

′)) denote the mean
and the covariance functions of GP, respectively.

Suppose that by the time t, nt RSS measurements have been
received with time stamps t1, t2, · · · , tnt

. Define xti as the
location associated with the measurement at ti, where ti ≤ t.
In addition, define yti as the measurement at ti. Therefore,
at any t, we can have a set of 3-tuple that can be denoted
as Dt = {xti , ti, yti}

nt

i=1. Given Dt, define Kt as a covari-
ance matrix with the (i, j)th entry as k((xti , ti), (xtj , tj)).
In addition, define k∗ as a vector with the jth entry as
k((xtj , tj), (xt∗ , t∗)). Denote the set of measurements re-
ceived until t by yt = [yt1 , yt2 , · · · , ytnt

]⊺. The GP predictive
distribution at a new input (x∗, t∗) can be written as

µ∗ = m(x∗, t∗) + k⊺
∗(Kt + σ2I)−1(yt −m(x∗, t∗)), (5)

σ2
∗ = k((x∗, t∗), (x∗, t∗))− k⊺

∗(Kt + σ2I)−1k∗, (6)

where µ∗ and σ2
∗ denote the posterior predictive mean and

variance of the unknown function at (x∗, t∗), respectively.
The hyperparameters of GP are learned from the data by

maximising the log marginal likelihood that can be written as

log p(yt|Dt, θθθ) = −1/2y⊺
t (Kt + σ2I)−1yt

− 1/2 log|Kt + σ2I| − nt/2 log 2π, (7)

where θθθ represents the set of hyperparameters.

B. Acquisition Function

Selecting measuring points to evaluate the unknown func-
tion sequentially and locate the moving target efficiently
with minimum measurements is challenging. There exists an
EE dilemma in this decision-making process: Exploring the
unknown function provides knowledge but may lead to low
search efficiency. However, exploiting the learned knowledge
may miss the opportunity to measure higher RSS from under-
explored areas. To address this, an AF [19] is optimised to
determine measuring points while balancing the EE.

The selection strategy of the next measuring point depends
on the type of AF. Here we apply the expected improvement
(EI) function [20]. The objective is to find the next measuring
point with the highest EI as compared to the incumbent mea-
surement that can be defined as τnt

= maxi∈{1,2,··· ,nt} yti .
The EI function can be written as

αEI(xt, t) := E[[f(xt, t)− τnt ]
+],

=σ(xt, t)ϕ

(
∆(xt, t)

σ(xt, t)

)
+∆(xt, t)Φ

(
∆(xt, t)

σ(xt, t)

)
, (8)

where E(·) represents the mathematical expectation operation.
∆(xt, t) = µ(xt, t) − τnt

is the expected difference between
the predicted RSS at a point and the incumbent target. Here
ϕ(·) and Φ(·) denote the probability density and cumulative
density functions, respectively. In (8), the predictive standard



Fig. 1: UAV-based searching and tracking

deviation affects the first term and the predictive mean affects
the second term. By maximising the EI function, the EE trade-
off can be well-balanced. In this work, the AF is maximised
using the grid search method.

III. EFFICIENT BO-ASSISTED SEARCH AND TRACKING

Assuming UAVs can fly over the area of interest to measure
RSS from the moving target, building an expressive and
scalable surrogate (GP) for the dynamic function is a critical
challenge. This section describes the proposed composite
kernel and GP factorisation to address these challenges.

A. Kernel Design

Inspired by [13], a spatial-temporal composite kernel

k((xt, t), (x
′
t, t

′)) = kS(xt,x
′
t) · kT(t, t

′), (9)

is introduced to capture both the spatial and temporal corre-
lations in the unknown time-varying function, where kS(·, ·)
represents the spatial kernel, used for characterising the one-
time RSS map, kT(·, ·) represents the temporal kernel which
considers the temporal correlations of the RSS.

The designed GP spatial composite kernel is a sum of a
constant kernel kS,Con and a squared exponential (SE) kernel
kS,SE. The constant kernel is added considering the fact that
the RSS values in a specific area are above a certain level.
The SE kernel represents the smooth changes of RSS. For the
temporal kernel, we choose the Matérn kernel kT,Mat since it
includes a large class of kernels and is proven to be very useful
for matching physical processes realistically.

The kernel function (9) can be rewritten as

k((xt, t),(x
′
t, t

′))=(kS,Con(xt,x
′
t)+kS,SE(xt,x

′
t))·kT,Mat(t, t

′),

(10)
kS,Con(xt,x

′
t) = Φ, (11)

kS,SE(xt,x
′
t) = σ2

m exp
(
−∥xt − x′

t∥2/l2
)
, (12)

kT,Mat(t, t
′)=σ2

m

21−v

Γ(v)
(

√
2v∥t−t′∥

l
)vKv(

√
2v∥t−t′∥

l
) (13)

with σ2
m and l being the amplitude and length scale parameters,

respectively, Φ represents a constant. Kv(·) is a modified
Bessel function and Γ(·) is a Gamma function. Moreover, v is
a smoothness parameter of Matérn kernel. Different functions
belonging to the Matérn kernel can be built with varying v.

Fig. 2: HODLR matrix at different levels

B. GP Factorisation

This section introduces a novel approach that enhances the
BO efficiency by integrating the hierarchical off-diagonal low-
rank (HODLR) structure [21] into the GP surrogate model
of the BO framework. The HODLR structure divides recur-
sively the covariance matrix and applies rank-revealing lower-
upper factorisation hierarchically to certain sub-matrices in
the off-diagonal section, while retaining the diagonal parts.
Consequently, a subset of columns, rows, or entries is formed,
which is much quicker to calculate than the entire matrix.
Generally, constructing the HODLR matrix requires a cost of
O
(
n log2(n)

)
. Fig. 2 gives a graphical representation of the

HODLR matrices. A real symmetric matrix Kt ∈ Rnt×nt can
be decomposed to a two-level HODLR matrix:

Kt =

[
Kt,1 U1V

T
1

V1U
T
1 Kt,2

]
, (14)

with the diagonal blocks decomposed into

Kt,1 =

[
K

(2)
t,1 U

(2)
1 V

(2)T

1

V
(2)
1 U

(2)T

1 K
(2)
t,2

]
,

Kt,2 =

[
K

(2)
t,3 U

(2)
2 V

(2)T

2

V
(2)
2 U

(2)T

2 K
(2)
t,4

]
.

(15)

The Kt,1 and Kt,2 are the n/2j×n/2j diagonal block matrices
from the original matrix Kt and U(j), V(j) matrices are
n/2j × r matrices with r ≪ n. j denotes the level of decom-
position, which are 2 in this example, and rank r depends on
the desired accuracy of the low-rank approximation. A higher
rank results in less precision loss and higher computation cost.

Given an HODLR-type factorisation, rapid computation of
the inverse of the entire matrix is allowed via the Sherman-
Morrison-Woodbury formula [14]. This method has a com-
putational complexity of O(n log n) for both solving linear
systems and computing the determinant, satisfying the require-
ments of real-time implementation.

C. Algorithm Overview

The proposed approach reuquires an initial set of data D0

and a GP prior GP0 as the surrogate of the unknown dynamic
function. The initial input data can be randomly sampled from
the search space which is an area of the location x and a period
of time t. The GP is used to construct the AF that leads to
searching for the maximum RSS location over time. Besides,
we introduce a superscript k ∈ {1, 2, · · ·K} to represent
different UAVs, where K is the number of UAVs. In addition,
at any time ti, define the spatial search space as the whole area



of interest and the temporal search space as t = [ts, ts + γ],
where ts = ti+ψ. A large γ value means a large time interval
for one UAV to decide when to collect a measurement, thereby
reducing the number of measurements when the total search
time is fixed. The proposed algorithm works in an iterative
process, the UAVs are scheduled to collect measurements
and send them to an edge node which then updates GP and
determines new points for UAVs to measure. The proposed
algorithm will terminate after a certain period of time T .

The detailed process is described as Algorithm 1.

Algorithm 1 BO-assisted joint sensor scheduling and tracking

Require: Prior surrogate model GP0, initial data D0, UAV
number K

1: while ti ≤ T do
2: Receive the K RSS measurements
3: Set the time stamp ti = max{t1i , t2i , · · · , tKi }
4: Augment data Di ← Di−1 ∪

{
xk
ti , t

k
i , y

k
ti

}K

k=1
5: Generate the HODLR structure for covariance matrix
6: Update GPi by maximising (7)
7: Set the start time stamp ts ← ti + ψ
8: Update search bound of time interval as t = [ts, ts + γ]
9: Determine {xk

ti+1
}Kk=1 and {tki+1}Kk=1 by sequentially

maximising AF as follows:

{xk
ti+1

, tki+1} = argmax
xt∈X ,t∈t

αk(xt, t)

10: Send the UAVs to measure the RSSs at {xk
ti+1

, ti+1}Kk=1

11: i← i+ 1
12: end while

IV. NUMERICAL RESULTS

A. Simulation Settings

The log-distance path-loss model [22]

yti = y0,ti − η log10(dti) + ϵ, (16)

is used to generate RSS measurements, where y0,ti is a
constant characterising the transmission power at ti with the
unit of dBm. An RSS yti of a target measured by a UAV.
The distance between the target and the UAV at ti is defined
as dti . Sensor distortions and environmental interference are
represented by ϵ, which is assumed to be a zero-mean Gaussian
noise. The proposed algorithm is validated by setting the
standard deviation of the Gaussian noise as one dB. Here
η is the attenuation gain. We tested the proposed approach
in a 400m x 400m area with a target trajectory based on
the constant velocity model and an initial state vector of
[50m, 1m/s, 50m, 1m/s]. Two UAVs are used for tracking,
and two BO-based approaches are implemented with different
factorisation methods. We also study the impact of the level of
HODLR factorisation determined by the block size parameter
(it controls the size of the dense diagonal grey block shown
in Fig. 2). As a general rule, a smaller block size leads to a
higher level of factorisation, which brings faster computation

TABLE I: One-step computational time

γ Factorisation method GP update (sec) AF maximisation (sec)
1st UAV 2nd UAV

γ = 1
HODLR 0.86 0.61 0.62
Cholesky 0.97 0.77 0.77

γ = 2
HODLR 0.29 0.72 0.73
Cholesky 0.49 0.84 0.85

γ = 4
HODLR 0.04 0.79 0.80
Cholesky 0.19 0.96 0.97

at a cost of lower accuracy than the full GP. All the results
are averaged over 100 Monte Carlo simulations.

B. Computational Time

The proposed HODLR factorisation-based BO is compared
to Cholesky factorisation-based BO in terms of computational
time. Changing γ controls measurement size and evaluates
approach efficiency. A large γ value reduces the frequency
of collecting measurements and also means not very frequent
AF maximisation and GP updates, leading to long search
intervals for one-step operation (based on lines 3, 8, and 9 in
Algorithm 1). The average received numbers of measurements
in the three cases are 424, 268 and 162, respectively. To
ensure fairness, we calculate the time required for one-step AF
maximisation and GP update. Table I shows that increasing
γ decreases GP update time, while AF maximisation time
increases due to less efficient grid searching with more grid
points required. The AF maximisation time for each UAV is
presented separately, as it can be done asynchronously. The
proposed HODLR factorisation-based approach outperforms
the Cholesky-based approach in terms of shorter time for both
AF maximisation and GP update. Specifically, the HODLR
factorisation reduces 79% of surrogate model update time
when γ = 4 and up to 21% of AF maximisation time.

C. Tracking Error

The tracking errors of both approaches are presented in
Fig. 3. The proposed approach with HODLR factorisation
achieves slightly higher errors than the Cholesky factorisation
due to a more sparse representation of the covariance matrix.
However, it still performs competitively well as compared to
the Cholesky factorisation. Particularly, the gap between the
two approaches becomes smaller with less training data.

Fig. 3: Tracking error versus γ time step in the BO search (as in Algorithm 1)



Fig. 4: Tracking error and computational time versus HODLR block size

D. HODLR Factorisation Level

The total computational time and the tracking error affected
by the HODLR factorisation level are presented in Fig. 4.
Here the HODLR block size is changed while γ is fixed to
be one. The implementation of the algorithms was performed
in Python, on a PC with i7-12700h CPU. The results reveal
that although smaller block sizes do incur higher errors, the
algorithm still has efficient computational time. High compu-
tational times at small block sizes are due to the computational
overhead in constructing the HODLR matrix. The results
highlight the importance of choosing the proper HODLR block
size to achieve the best computational efficiency. Noted that
better computational efficiency results could be achieved by
different implementations of the proposed approach.

V. CONCLUSION

This paper proposes a novel joint sensor scheduling and
target tracking approach to send multiple UAVs to track a
moving target using RSS measurements. A spatial-temporal
composite kernel comprised of a constant kernel, a squared
exponential and a Matérn kernel is designed. Then a GP
surrogate model for the latent process of RSS generation is
constructed that varies over time. Particularly, the HODLR fac-
torisation is integrated into the proposed algorithm to improve
its efficiency. Numerical results confirm that the proposed
HODLR factorisation-based BO reduces the running time as
compared to the standard Cholesky factorisation-based BO
while achieving competitive tracking accuracy. Future work
will focus on developing non-myopic strategies to solve the
sensor scheduling problem.
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